Global Positioning System (GPS) data acquisition devices have proven to be useful tools for collecting real-world motion data. The data collected by these devices provide valuable information when studying the vehicle movement parameters. For vehicle modeling, this data is invaluable for analyzing fuel consumption and vehicle performance. The study presents a methodology for developing the driving cycle of special cars, during which the speed profile of a particular type of vehicle is studied, loaded and processed, and noisy data is filtered for the purity of the experiment. The test data for severe operating conditions are analyzed. A city driving cycle has been developed for a special truck concrete mixer truck in the conditions of the city of Tyumen. Estimated fuel economy of the specified vehicle is estimated.
Keywords: driving cycle, fuel efficiency of concrete mixer truck, noisy data, data filtering, GLONASS/GPS
The testing of technique for modeling the local atomic structure and X-ray absorption spectra for zinc ions in an aqueous solution in the presence of arachidic acid has been adjusted. Models of the local structure of zinc with different coordination geometries are considered: planar, pyramidal, tetrahedral, and octahedral. The cases of increasing distances between the zinc ion and water molecules in the plane and in the axial direction are simulated for octahedral coordination. It has been established that the most probable change in the local structure of the zinc environment in solution in the presence of arachidic acid is the removal of water molecules from zinc ions in the axial position and their further replacement with the formation of a bond with the carboxyl group of arachidic acid.
Keywords: arachidic acid, lipid layer, local atomic structure, X-ray absorption spectroscopy, total external reflection, zinc, biomembrane, finite difference method, monolayer
In industrial production, stacker loaders used for loading and transporting goods packed on pallets are quite widely used in warehouse work. Basically, when performing a loading and transport technological operation, the functionality of the stacker is sufficient. When an obstacle appears or pallets are stacked, additional maneuverability is required, as a result of which the overall performance of the loader is lost. As a result of the conducted research, it was found that when bypassing obstacles and laying pallets, the time spent on maneuvering the chassis is up to 13%, while the utilization factor of the loader-stacker in terms of productivity is 0.7. Numerical modeling of the positioning process of the load-handling body of the loading and transport unit was carried out, on this basis, the design of a loader-stacker with expanded functionality was proposed and developed, in particular, the service area increased due to the use of a tripod manipulator and two guide actuators, which reduces the time of the technological operation of loading and unloading pallets in warehouse work. Geometrical, structural and kinematic parameters of the loader mechanism are calculated.
Keywords: numerical simulation, loader-stacker, service area, lifting body, manipulator, hinges, chassis, structural analysis, geometric analysis, kinematic analysis, executive drive, pallet